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Abstract

Event-related potentials (ERPs) are used to study how language
is processed in the brain, including differences between na-
tive (L1) and second-language (L2) comprehension. In low-
proficiency L2 learners, syntactic violations give rise to an
N400, but this changes into a P600 as their L2 proficiency in-
creases. The precise functional interpretation of ERPs, however,
remains a matter of debate. Fitz and Chang (2019) proposed a
theory where ERPs reflect learning signals that arise from mis-
matches in predictive processing. These signals are propagated
across the language system to make future predictions more ac-
curate. We test if this theory can account for the N400-to-P600
switch in late bilinguals, by implementing a model capable of
simulating the N400 and P600. We perform an experiment
designed to elicit a P600 effect in simulated L2 learners pro-
gressing through learning stages. Simulated Spanish-English
participants showed similar ERP effects in their L2 (English)
as human participants did in ERP studies. Over the course of
L2 learning, simulated N400 size decreased while P600 size
increased, as it does in humans. Our findings support the via-
bility of error propagation as an account of ERP effects, and
specifically of how these can change over L2 learning.
Keywords: Event-related potential; N400; P600; prediction
error; bilingualism.

Introduction
Psycholinguistic studies investigating neural mechanisms un-
derlying adult second-language (L2) learning and process-
ing often use electroencephalography (EEG), a technique for
recording electrical voltage potentials produced by neural ac-
tivity. Recorded potentials can be analyzed in relation to
cognitive events, and can yield interpretable patterns called
event-related potentials (ERPs) (Morgan-Short, 2014). ERP
effects have been observed in response to syntactic violations
in first language (L1) processing, as an increased positivity in
the ERP waveform that starts around 600 ms after observing
an anomalous word, as compared to its correct counterpart
(Osterhout and Mobley, 1995). This effect is called a P600.
Another ERP effect is reliably elicited in response to a lexico-
semantic violation. This effect, called an N400, is a negative
voltage deflection around 400 ms after an anomalous word,

as compared to a semantically appropriate word (Kutas and
Hillyard, 1980).

ERP research has been done to find out if L2 learners show
similar ERP effects as native speakers for morpho-syntactic
and lexico-semantic processing. Research has shown that L2
learners can show native-like ERP waveforms for L2 grammat-
ical features that are present in their L1 as well as for features
unique to their L2 (Morgan-Short, 2014). ERPs of L2 learners
differing in proficiency indicate that some learners progress
through stages of syntactic learning, suggesting that there is
an intermediate stage of learning between no L2 grammatical
knowledge and grammaticalization (McLaughlin et al., 2010).
The observed ERP effects differ between studies. Some L2
learning studies that investigated syntactic processing found
an N400 for learners with low proficiency and a P600 for
learners with high proficiency, suggesting that L2 learners
might rely more on lexical processing at early learning stages
(Alemán Bañón et al., 2014; Antonicelli and Rastelli, 2022;
Dı́az et al., 2016; Esfandiari et al., 2021; Grey, 2022; Mickan
and Lemhöfer, 2020; Nichols and Joanisse, 2019; Osterhout
et al., 2008; Tanner et al., 2013, 2014). Other related studies
found a similar effect for proficiency but ERPs were bipha-
sic at low proficiency levels, resembling an N400 followed
by a P600. With increasing proficiency, the amplitude of the
N400 decreased and the P600 amplitude increased but ERP
waveforms remained biphasic to a degree (Bian et al., 2021;
Bowden et al., 2013; Caffarra et al., 2015; Esfandiari et al.,
2020; Grey et al., 2018; McLaughlin et al., 2010; Morgan-
Short et al., 2012; Morgan-Short, 2014; Pélissier et al., 2015).
In the majority of studies, L2 proficiency was the most impor-
tant factor determining ERP profiles (Antonicelli and Rastelli,
2022; Caffarra et al., 2015; McLaughlin et al., 2010; Morgan-
Short, 2014).

Here we are interested in whether L2 learning stages reflect
on the ERPs in simulated participants like in human partic-
ipants. We do so by taking a monolingual computational



cognitive model of sentence production that has been used to
explain ERPs, and extending it to the bilingual case.

Computational models of ERP effects
Several connectionist cognitive models have been proposed
to explain the N400 ERP effect in sentence comprehension
(see Eddine et al., 2022, for a review). Some of these take
the magnitude of change in neural activation as a predictor
of the N400 (Rabovsky et al., 2018) while others take the
network’s prediction error to account for N400 size (Brouwer
et al., 2017; Fitz and Chang, 2019; Frank et al., 2015).

While a number of models can potentially explain the N400,
the models by Brouwer et al. (2017) and Fitz and Chang
(2019) are in addition able to model the P600. Specifically,
Fitz and Chang (2019) used Chang’s (2002) Dual-path model
to show that prediction error corresponds to N400 size and
backpropagated error corresponds to P600 size across a wide
range of studies, providing support for the hypothesis that
ERPs might reflect learning signals. This account of the N400
and P600 is known as the Error Propagation account.

The Dual-path model is a connectionist model of sentence
production and syntactic development. The model has two
pathways. The first pathway is the sequencing system that
learns how words are ordered in a sentence and is based on
the Simple Recurrent Network (Elman, 1990). The second
pathway is a meaning system that learns how to map messages
onto sentences in a target language. Previously, the Dual-path
model was used to explain a wide range of sentence production
phenomena in a number of different languages (Chang et al.,
2006, 2015; Janciauskas and Chang, 2018; Tsoukala et al.,
2017, 2021). For our studies, we used a bilingual extension of
the Dual-path model (Tsoukala et al., 2021).1

The present study
We perform a computational modelling experiment to investi-
gate whether simulated L2 learners progress through stages of
syntactic learning, and further test the viability of Error Prop-
agation as an account of ERPs. We do this by ascertaining
whether a P600 effect can be simulated by the Bilingual Dual-
path model, and whether the magnitude of this effect increases
in later L2 learning stages. We simulate native speakers of
Spanish (L1) who start learning English (L2) from a later age.
At every L2 learning stage, we run a subject-verb number
agreement experiment similar to one of the experiments in
Fitz and Chang (2019), presenting simulated participants with
stimuli containing syntactic violations that elicit a P600 in
native speakers (Osterhout et al., 2008; Tanner et al., 2013,
2014), and with control sentences without such violations.

We expect to find a simulated P600 effect in the Bilingual
Dual-path model, since Fitz and Chang (2019) were able to
have the monolingual Dual-path model reproduce N400 and
P600 effects for stimuli used in a number of human EEG
studies. We further expect N400 and P600 effects to occur and

1https://gitlab.com/yhkhoe/bilingual-dual-path/-
/tree/ICCM2023

their magnitude to decrease and increase, respectively, through
learning stages, because ERP effects and their magnitude in
L2 learners have been shown to be primarily determined by
proficiency (Antonicelli and Rastelli, 2022; Caffarra et al.,
2015; McLaughlin et al., 2010; Morgan-Short, 2014). We
specifically expect the P600 effect to be more pronounced at
later learning stages since advanced L2 learners show native-
like ERP waveforms for L2 grammatical features (Morgan-
Short, 2014). Additionally, we specifically expect the N400
effect to decrease in magnitude at later learning stages, because
lexical learning precedes syntactic learning in L2 learners and
L2 learners seem to rely on lexical processing early on because
of this (McLaughlin et al., 2010).

Methods
To simulate late Spanish-English bilinguals, we trained the
Bilingual Dual-path model (Figure 1) to learn Spanish from
“infancy” and English as L2 at a later stage. The training input
to the model consisted of sentences from two artificial lan-
guages (modelled on Spanish and English) that were paired
with messages that encoded their meaning. The model learned
to express messages as sentences of the target language (Span-
ish or English) by predicting the next word.

Artificial languages Table 1 shows the different construc-
tions in the artificial languages. Constructions were distributed
uniformly in the training input. Taken together, the two ar-
tificial languages consisted of 258 lexical items: 121 nouns,
11 adjectives, 6 pronouns, 6 determiners, 12 prepositions, 87
verbs, 7 auxiliary verbs, 6 verb inflectional morphemes, 1 plu-
ral noun marker, and the period. The inflectional morphemes
were used to generate verbs with simple, progressive and per-
fect aspect in present or past tense. The plural noun marker
was used to generate plural nouns.

The meaning space had 116 concepts and 7 thematic
roles. Thematic roles are similar to those from Chang et al.
(2006). To provide a simple example, the meaning of “the
old lady carves a cake” would be represented as AGENT:
LADY; ACTION-LINKING: CARVE; PATIENT: CAKE; AGENT-
MODIFIER: OLD. This is implemented by introducing fixed-
weight connections between role units and concept units (see
Figure 1).

Model configuration and training For our simulations, we
modified the Bilingual Dual-path model to resemble the archi-
tecture used in Fitz and Chang (2019): Previous word-history
and role-history layers were added to the model which kept a
running average of the activation of the input layer and role
layer, respectively, and were connected to the hidden layer.

As pre-registered2, all models used 50 hidden-layer units
and 30 compress-layer units. Internal layer units used the
logistic activation function; the output layer units used a soft-
max activation function. Weights were initialized randomly,
uniformly between ±1. Fixed weights for concept-to-role

2The pre-registration can be accessed here: https://
aspredicted.org/blind.php?x=CGL_X3R



Figure 1: Architecture of the Bilingual Dual-path model. The model learns to map messages onto sentences in different languages
by predicting the next word in its input. The sequencing system (lower path) maps from the input through a hidden layer to
the output via a compression layer. The meaning system (upper path) uses information about thematic roles, concepts, and
the realization of concept (e.g., by a pronoun or with an (in)definite determiner). The number of units per layer are shown in
parentheses. Figure adapted from Tsoukala et al. (2021).

connections and realization-to-role connections were set to a
value of 6. The concept layer had a set bias of −3.

As pre-registered, for each of 60 model subjects and for
Spanish and English combined, we generated 10,000 unique
message-sentence pairs for training and a novel set of 200
message-sentence pairs for testing. The sentences are approx-
imately equally divided over the two languages, where the
percentage of Spanish sentences was sampled from a uniform
distribution between 48% and 52% and the rest was English.
Following Fitz and Chang (2019), the message was excluded
from 70% of the training items. Each model first iterated five
times over its monolingual Spanish training set, followed by 75
epochs over its bilingual training set. The training set’s order
was randomized at the beginning of each of these 80 epochs.
The model learned by steepest descent backpropagation, with
momentum set to 0.9. Initially, the learning rate was set to 0.1,
it decreased linearly to 0.02 over the 5 epochs of monolingual
training, and then stayed constant during bilingual training.

Model evaluation After each epoch, model accuracy was
tested using a 200-sentence test set. The model’s L2 English
proficiency was evaluated with two measures. First, syntactic
accuracy was measured as the percentage of sentences for
which all words had the correct part of speech. Second, mean-
ing accuracy was measured as the percentage of syntactically
correct sentences that also conveyed the target message with-
out additions. As pre-registered, we excluded the 20 subjects
with the lowest meaning accuracy, leaving data from 40 model
subjects.

Experimental trials To elicit ERPs, we generated 30 En-
glish sentence pairs, each consisting of a control and a vi-
olation item. The control was an active transitive sentence

where the verb form agreed with the subject in number. In
the violation item, the verb did not agree with subject number.
Violations were created by adding or omitting the inflectional
marker for singular verbs (-ss), see Table 2.

Model subject differences Weights are initialized randomly,
and differed between subjects. The percentage of Spanish
versus English (training and testing) sentences varied between
subjects, ranging from 48/52 to 52/48. The distribution of
constructions is the same for all subjects. Training, testing
and experimental trial sentences in the same language with
the same constructions can differ between subjects in two
ways. Firstly, sentences can differ in content-words resulting
in different meaning of sentences. Secondly, singular nouns
can differ in definiteness of the article.

Measuring model ERPs After every training epoch, the
model was tested on the experimental sentence pairs. As in
Fitz and Chang (2019), learning was turned on in the model
during processing, but connection weights were reset to the
weights of the respective training epoch after each test sentence
in order to exclude learning effects during the experiment. The
state in which the model encountered each trial was thus the
same for all of the sentences.

We measured the prediction error at the output layer and
the hidden layer (see Fitz and Chang, 2019, for details). The
prediction error of output unit j is the difference between its
activation y j and the target activation t j, or: δ j = y j − t j, with
y j ∈ [0,1] and t j ∈ {0,1}. This error was backpropagated in
the network, as happens during training, to generate error at
deeper layers. Error for units connected to the output layer
was calculated as shown in Eq. 1, where k indexes the units
connected to the output layer with weight wk j, and j references



Table 1: Constructions with English example sentences. In
the artificial language modelled on English, inflectional mor-
phemes -prg, -prf and -ss are used for verb conjugations in
progressive, perfect, and 3rd-person present simple tense, re-
spectively.

Construction Example sentence
Animate intransitive The woman is play -prg
Animate with intransitive The woman is play -prg

with a dog
Inanimate intransitive The apple is fall -prg
Locative The boy is walk -prg

around the school
Theme-experiencer (active) The uncle surprise -ss

the grandfather
Theme-experiencer (passive) The grandfather is

surprise -prf by the uncle
Transitive (active) The girl bake -ss a cake
Transitive (passive) The cake is bake -prf

by the girl
Cause-motion The hostess is put -prg

a cactus into the office
Benefactive transitive The grandmother repair -ss

the cup for the girl
State-change The waiter is fill -prg

the cup with water
Locative alternation The man spray -ss

the sink with water

the units that are backpropagating error.

δk = yk(1− yk)
n

∑
j=1

δ jwk j yk ∈ [0,1] (1)

Error was calculated the same for other layers backpropa-
gating error into the network. The error was collected after
the transitive verb where the third-person singular morpheme
was present or absent. The simulated N400 and P600 sizes
are the sums over |δ| of the output- and hidden-layer units,
respectively. Note that the scales of these two measures are
not comparable because the output units, unlike the hidden
units, use the softmax activation function and therefore their
activations always sum to 1.

Table 2: Example sentences for the experimental trials. The
bold morphemes indicate the sentence position where predic-
tion error was measured.

Example sentence Subject Nr Agreement
the old lady carve -ss a cake Singular Control
the old lady carve a cake Singular Violation
the old lady -s carve a cake Plural Control
the old lady -s carve -ss a cake Plural Violation

Results
Figure 2 displays the proficiency of the model at the start and
the end of bilingual training.
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Figure 2: Mean proficiency of model. The syntactic and
meaning accuracy are displayed for the first and last epoch of
bilingual training. The error bars show the 95% confidence
interval.

The mean prediction error over L2 learning stages at the
hidden layer and the output layer are displayed in Figure 3,
respectively. At the output layer, the mean error (simulating
N400) for the VIOLATION items, was 1.89 at the start of bilin-
gual training and increased to 1.93 at epoch 19, whereafter it
decreased to 1.33 over the learning epochs. The mean error at
the hidden layer (simulating P600) for the VIOLATION condi-
tion was 3.30 at the start of bilingual training, and increased
over the learning epochs to 12.52. For the CONTROL items,
error at both layers was high initially, but decreased to values
close to 0 during L2 learning.

Pre-registered analysis
As pre-registered, we analyzed the data from our experiment
with a linear mixed-effects model, using the lmer function
from the package lme4 (Bates et al., 2015) in R (R Core
Team, 2013). The model fits the prediction error from the
Bilingual Dual-path model, a numerical value. The regres-
sion model3 included the predictors of interest: AGREEMENT,
LAYER, LEARNING STAGE and their interactions. AGREE-
MENT and LAYER were sum-coded. AGREEMENT levels Con-
trol and Violation were coded −1 and +1, respectively. Levels
Hidden and Output of LAYER were coded +1 and −1, respec-
tively. The number of L2 training epochs is indicated by the
LEARNING STAGE predictor, which was standardized. We fit
random intercepts for model participants, and by-participant
random slopes for the three predictors of interest and their in-
teractions. Table 3 reports estimates, 95% confidence intervals,

3The script for the mixed-effects model can be ac-
cessed here: https://osf.io/yprjk/?view_only=
aae2b8a52819475eb127721931de19ba
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Figure 3: Mean prediction error (averaged over all model subjects) as a function of learning stage, in the output layer (left panel)
and in the hidden layer (right panel), for number agreement violation and control items,. Shaded areas represent the 95% CI.

Table 3: Summary of the fixed effects in the linear mixed-effects models.

Predictor Est. 95% CI SE df t-value Pr(> |t|)
Intercept 3.54 [3.32,3.75] 0.11 40.00 33.84 <0.001
AGREEMENT 3.00 [2.81,3.20] 0.10 40.05 30.76 <0.001
LAYER 2.61 [2.41,2.82] 0.10 40.00 26.17 <0.001
LEARNING STAGE 0.10 [−0.04,0.24] 0.07 40.17 1.41 0.165
AGREEMENT:LAYER 2.28 [2.10,2.46] 0.09 40.04 25.49 <0.001
AGREEMENT:LEARNING STAGE 0.50 [0.36,0.63] 0.07 40.15 7.31 <0.001
LAYER: LEARNING STAGE 0.31 [0.19,0.43] 0.06 40.18 5.08 <0.001
AGREEMENT:LAYER: LEARNING STAGE 0.49 [0.37,0.61] 0.06 40.16 8.34 <0.001

standard errors, degrees of freedom, t-values and p-values.
The positive estimate for the interaction between the predic-

tors AGREEMENT, LAYER and LEARNING STAGE (Estimate =
0.49, 95% CI = [0.37, 0.61]) indicates that the learning stages
affect the two layers’ sensitivity to violated sentences differ-
ently. The estimate has a confidence interval not including
zero, thus there was an effect of the three-way interaction
between these predictors. As Figure 3 clearly shows, this in-
teraction is driven by an increasing effect of violation in the
hidden layer combined with a decreasing effect of violation in
the output layer.

Discussion
In the present work, we investigated whether simulated L2
learners progress through stages of syntactic learning. We used
a connectionist model of syntactic development (Chang, 2002)
to simulate Spanish-English bilinguals and exposed the model
to L2 number-agreement violations at different points in time.
Similar to the account in Fitz and Chang (2019), we recorded
ERPs in response to these syntactically anomalous sentences
from the model. On this account, ERPs are summary signals
of brain activity that index the propagation of prediction error
during comprehension whose functional role is to support

learning. Prediction error at the output layer was used to
model the N400 and the backpropagated prediction error at
the hidden layer was used to model the P600. The results of
our simulations revealed a clear P600 effect for syntactically
anomalous sentences in the L2, as well as a clear N400 effect
early in acquisition. We also found that over time the P600
increased as the model became more proficient in the L2 and
the N400 decreased over time. These findings are similar
to human L2 learners as reported in several ERP studies on
second language acquisition (Antonicelli and Rastelli, 2022;
Caffarra et al., 2015; McLaughlin et al., 2010; Morgan-Short,
2014). Thus, our results support a theory of stages of syntactic
learning in L2 learners where the magnitude of different ERP
components changes during acquisition.

In our simulations, monolingual training resulted in opti-
mal network weights for the L1, after which new L2 learning
required a considerable amount of further training. At the
beginning of L2 learning, the model does not know the En-
glish syntax for noun-verb number agreement. Consequently,
after seeing the verb, the model activates a variety of candi-
date words and morphemes, which leads to large prediction
error at the lexical output layer, and thus a large-amplitude
N400 prediction for both violations and control sentences.



Prediction error at the hidden layer indexing the P600, in con-
trast, is relatively small because the model has not yet learned
the syntax of agreement. As the model gradually acquires
agreement, word predictions after the verb become increas-
ingly more accurate because they are more and more driven
by learned syntactic knowledge in the hidden layer. When the
model is presented with a number agreement violation item,
there is now a larger mismatch between the observed violation
and the correct word predictions made by the model at this
sentence position. Because the correct prediction is due to
syntactic knowledge at the hidden layer, the hidden layer gets
the majority of the blame when such a mismatch occurs. Thus,
the size of the P600 effect increases during syntactic learning.
The lexical output layer, on the other hand, gradually receives
less blame as the syntax of agreement is acquired deeper in
the network, which leads to a decrease in the N400 effect over
time.

The error propagation account explains why ERPs elicited
by lexical violations (N400) precede ERPs in response to syn-
tactic violations (P600) and this account has been able to repro-
duce key findings from a considerable number of monolingual
ERP studies (Fitz and Chang, 2019). The results presented
here on bilingual ERPs, and how they change over develop-
ment, adds further support for this account. Apart from the
error propagation account, the model of Brouwer et al. (2017)
can also explain monolingual N400 and P600 effects but it
remains to be tested whether this model would be able to sim-
ulate ERP effects in bilinguals and the change in size of these
effects during second language acquisition. What is unique
about the error propagation account is that it can naturally
model and explain ERPs in development because on this ac-
count ERPs are directly linked to learning. Therefore, the
magnitude of ERP effects is expected to change as different
pieces of linguistic knowledge are acquired. One limitation of
the model is that it currently does not account for differences
in the precise onset of the N400 or P600 and that it does not
model earlier ERP components such as the early left-anterior
negativity (eLAN) which has been elicited in some bilingual
studies (Caffarra et al., 2015).

At present, it is unclear to what extent L1–L2 language sim-
ilarity affects ERP effects in bilinguals. Some studies showed
reduced P600 effects, or no P600 effect, for syntactic features
that are instantiated differently between languages (Antoni-
celli and Rastelli, 2022; Liu et al., 2017; Morgan-Short, 2014),
while other studies have shown P600 effects for syntactic L2
features regardless of L1–L2 similarity (Caffarra et al., 2015;
McLaughlin et al., 2010; Morgan-Short, 2014). In future work,
the proposed model will be used to shed more light on the role
of language similarity in simulated bilinguals.
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